تخمین عمق گنبدهای نمکی با استفاده از داده‌های گرانی از طریق شبکۀ عصبی رگرسیون تعمیم‌یافته، مطالعۀ موردی: میدان مورس، دانمارک

نویسندگان

  • علیرضا حاجیان استادیار، گروه فیزیک، دانشکدۀ مهندسی هسته‌ای و علوم پایه، دانشگاه آزاد اسلامی واحد نجف‌آباد
  • محمود شیرازی 1استادیار، گروه فیزیک، دانشکدۀ مهندسی هسته‌ای و علوم پایه، دانشگاه آزاد اسلامی واحد نجف‌آباد
چکیده مقاله:

در این مقاله تخمین عمق گنبدهای نمکی با استفاده از روش شبکۀ عصبی رگرسیون تعمیم‌یافتهGRNN، از طریق داده‌های گرانی‌سنجی بررسی شده است. بدین منظور یک شبکۀ عصبی GRNN به وسیلۀ داده‌های گرانی که از روش پیشرو، مدل گنبد نمکی را به دست می‌آورد، به ازای اعماق مختلف به‌دست‌آمده آموزش داده شد و با محاسبۀ خطای شبکه، شبکه مرتب اصلاح شد تا معماری شبکه با خطای پذیرفتنی به دست آید. سپس به‌منظور تست شبکه از داده‌های مصنوعی با 5 درصد و10 درصد نویز استفاده شد که دقت خوبی (خطای نسبی تخمین عمق در حضور 5 درصد نویز برابر با 8/3 درصد و در حضور 10 درصد نویز برابر با 43/5 درصد) را نشان می‌دهد. همچنین به‌منظور آزمون شبکه برای داده‌های واقعی، مشخصه‌های لازم از داده‌های گرانی مربوط به گنبد نمکی مورس در دانمارک، استخراج و به‌عنوان ورودی به شبکه اعمال شد و نتایج تخمین عمق تحلیل و بررسی گردید. نتایج نشان داد که تخمین عمق به‌دست‌آمده تا حدود زیادی به مقدار واقعی نزدیک و قابل‌قبول است.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تخمین عمق گنبدهای نمکی با استفاده از داده های گرانی از طریق شبکۀ عصبی رگرسیون تعمیم یافته، مطالعۀ موردی: میدان مورس، دانمارک

در این مقاله تخمین عمق گنبدهای نمکی با استفاده از روش شبکۀ عصبی رگرسیون تعمیم یافتهgrnn، از طریق داده های گرانی سنجی بررسی شده است. بدین منظور یک شبکۀ عصبی grnn به وسیلۀ داده های گرانی که از روش پیشرو، مدل گنبد نمکی را به دست می آورد، به ازای اعماق مختلف به دست آمده آموزش داده شد و با محاسبۀ خطای شبکه، شبکه مرتب اصلاح شد تا معماری شبکه با خطای پذیرفتنی به دست آید. سپس به منظور تست شبکه از داده ...

متن کامل

تخمین شکل و عمق گنبدهای نمکی با استفاده از تفسیر داده‌های گرانی‌سنجی به روش شبکه‌های عصبی مصنوعی چندلایه

در ژئوفیزیک کاربردی برای نشان‌دادن توزیع اجرام زیرزمینی اغلب از اجسامی مانند کره، استوانة قائم، منشور قائم، استوانة افقی، گسل قائم، تاقدیس و ناودیس استفاده می‌شود. در این مقاله برای پیداکردن یک مدل محتمل‌تر برای گنبد نمکی از شبکه‌های عصبی مصنوعی استفاده می‌شود. بدین منظور یک شبکة عصبی چندلایه با بی‌هنجاری‌هایی آموزش داده شد که از دو جسم با توزیع‌های جرمی متفاوت به دست آمده‌اند و بی‌هنجاری‌های م...

متن کامل

تخمین شکل و عمق گنبدهای نمکی با استفاده از تفسیر داده های گرانی سنجی به روش شبکه های عصبی مصنوعی چندلایه

در ژئوفیزیک کاربردی برای نشان دادن توزیع اجرام زیرزمینی اغلب از اجسامی مانند کره، استوانة قائم، منشور قائم، استوانة افقی، گسل قائم، تاقدیس و ناودیس استفاده می شود. در این مقاله برای پیداکردن یک مدل محتمل تر برای گنبد نمکی از شبکه های عصبی مصنوعی استفاده می شود. بدین منظور یک شبکة عصبی چندلایه با بی هنجاری هایی آموزش داده شد که از دو جسم با توزیع های جرمی متفاوت به دست آمده اند و بی هنجاری های م...

متن کامل

تخمین عمق بی هنجاریهای گرانی با استفاده از شبکه های عصبی هاپفیلد

در این مقاله روش شبکه عصبی هاپفیلد برای تفسیر هوشمند داده های گرانی استفاده شده است. یک شبکه عصبی هاپفیلد برای تخمین عمق چشمه گرانی طراحی شده است. این شبکه طراحی شده برای داده های مصنوعی و واقعی آزمایش شده اند. در مورد داده های واقعی این شبکه برای تخمین عمق یک تونل قنات واقع در موسسه ژئوفیزیک به کار برده شده و نتایج حاصله به مقادیر واقعی عمق بسیار نزدیک است.

متن کامل

تخمین عمق بی هنجاریهای گرانی با استفاده از شبکه های عصبی هاپفیلد

در این مقاله روش شبکه عصبی هاپفیلد برای تفسیر هوشمند داده های گرانی استفاده شده است. یک شبکه عصبی هاپفیلد برای تخمین عمق چشمه گرانی طراحی شده است. این شبکه طراحی شده برای داده های مصنوعی و واقعی آزمایش شده اند. در مورد داده های واقعی این شبکه برای تخمین عمق یک تونل قنات واقع در موسسه ژئوفیزیک به کار برده شده و نتایج حاصله به مقادیر واقعی عمق بسیار نزدیک است.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 41  شماره 3

صفحات  425- 438

تاریخ انتشار 2015-09-23

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023